EPA GROUND WATER INVESTIGATION

San Mateo Creek Basin Uranium Legacy Site Tronox NAUM Ambrosia Lake Impact Area

November 15, 2016 Meeting

PROJECT OBJECTIVE

Investigate legacy uranium mining and milling impacts to ground water

MULTI-PHASED INVESTIGATION

Phase 1

Alluvial Aquifer San Mateo Creek Basin 2012 – 2016

Phase 2

Bedrock & Alluvial Aquifers
Tronox NAUM Ambrosia
Lake Impact Area
2015 – 2017

Phase 3

Develop Conceptual Site Model for Tronox NAUM Impacts 2016 - 2018

PRELIMINARY CONCEPTUAL SITE MODEL

What Do We Need to Know?

- Alluvial Aquifer
 - Where are the alluvial sediments?
 - Where is the ground water?
 - What is direction of flow?
- Bedrock Aquifers
 - What is the underlying bedrock hydrogeology?
 - What is the hydraulic relationship between alluvial and bedrock aquifers?

Modified from City of Las Cruces
Poster Display

CONCEPTUAL SITE GROUND WATER MODEL

Generalized Cross Section Through San Mateo Creek Basin

CONCEPTUAL SITE GROUND WATER MODEL

PHASE 1 COMPLETED

EPA Phase 1 Ground Water Report

- Completed in August 2016
- Released to stakeholders in September 2016
- Key components include:
 - Historical studies on uranium mining impacts
 - Field investigation
 - Conclusions

HISTORICAL STUDIES ON URANIUM MINING IMPACTS

- 1975 EPA study
 - Ground water contamination discovered
 - Sources mine water discharge and tailing seepage
 - Perennial flows created in creeks/arroyos
- 1981 and 1986 New Mexico studies
 - Alluvial ground water exceeds standards
 - Mine water discharge rapidly infiltrates and saturates alluvium

1975 – Ambrosia Lake Area

SUMMARY OF HISTORIC MINE WATER DISCHARGE QUALITY

Comparison to Alluvial Background Water Quality

Contaminant	1981 Mine Water Discharge Ambrosia Lake Area	1981 Mine Water Discharge San Mateo Area	1978-80 San Mateo Creek Upland Alluvial GW (Background)	
Gross Alpha (pCi/L)	580	1,100	2.5 – 15.0	
Uranium (mg/L)	2.4	0.080	0.005 - 0.010	
Selenium (mg/L)	0.410	0.040	0.005 - 0.005	
Molybdenum (mg/L)	0.79	0.32	0.005 - 0.010	
Chloride (mg/L)	90	10	3 – 8	
Sulfate (mg/L)	837	205	5-20	
Total Dissolved Solid (mg/L)	1,690	520	125 – 300	

New Mexico 1981 and 1986 Reports

父 公 Section 24 🛠 **Section 35** Mine Mine Section 30 Cliffside Mine Section 33 Mine Mine Rio Algom Mill **ROUNDY RANCH** Dams Much of Flow for Cattle Forage Tronox Wet Mine **HOMESTAKE** Other Wet Mine MILL Draft - For Discussion Purposes Only

MINE WATER DISCHARGE

Artificially Created **Perennial Flows** Observed to Reached Homestake **Impoundment** (EPA 1980)

MULTIPLE BORINGS DRILLED TO FIND ALLUVIAL WATER

SUMMARY OF CONCLUSIONS

Phase 1 Report

- Attempt to Characterize Alluvial Background had Mixed Results
 - Lack of Natural Saturation in Many Areas Investigated
- Alluvial Water Quality Varies Across Basin
 - Good quality upgradient of mines and mills
 - ✓ Meets standards
 - Poor quality downgradient of mines and mills
 - ✓ Exceeds standards
 - ✓ Similar to mine discharge water quality in some areas
- Mine Discharge Water Draining Through and Out of Alluvium

MASSIVE SATURATION AND DRAIN DOWN OF ALLUVIUM

- Caused by mine water discharges
- Water levels in central part of basin raised and dropped
 OVER 50 FEET
- Drain down not observed near Homestake

ALLUVIAL SATURATION SECTION 36 MINE AREA

- **23** Saturation Thickness
- Dry Well
- RAML Alluvial
 Monitoring Well DP62
- RAML AlluvialMonitoring Well DP71
- RAML Tres Hermanos C Monitoring Well

STATUS OF PHASE 2 INVESTIGATION

- Drilling/Sampling 2015 to Early 2016
 - Focus on Dakota Sandstone Ambrosia Lake Area
 - Alluvium Central Basin
- Analytical Results Summer 2016
- Data evaluation and interpretation Ongoing
- Draft report preparation Ongoing

CONTAMINANT MASS LOADINGS FROM MINES

1	8	Section 35	Mine, Ar	nbrosi	a Lake	, NM			2		
2		Mass of Uranium,	Molybdenum	, & Selen	ium disch	arged from 1960	to 1976 before NPDES t	reatment required			
3	LOWER M	INE WATER	DISCHA	RGE R	ATE	50 22				+	
5		Discharge Period	Discharg e Rate GPM	minute s per day	million gallon s per day (MGD)	AVG COC concentrati on in mine effluent (MG/L)	Formula: Ibs/day = dose X flow x 8.34 lb/gal	AVG POUNDS PER DAY (lbs/day)	AVG POUNDS PER YEAR	16 YEAR TOTAL POUNDS DISCHARGED	16 YEAR TOTAL TONS DISCHARGED
-	URANIUM	1960-1976	850	1,440	1.22	5.25	(5.25 MG/L) X (1.22 MGD) X 8.34 lb/gal	53.59	19561.39	312982.19	156.49
-	MOLYBDENUM	1960-1976	850	1,440	1.22	1.91	(1.91MG/L) X (1.22 MGD) X 8.34 lb/gal	19.50	7116.62	113865.90	56.93
9	SELENIUM	1960-1976	850	1,440	1.22	0.02	(0.02 MG/L) X (1.22 MGD) X 8.34 lb/gal	0.20	74.52	1192.31	0.60
1 2 3	HIGHER N	INE WAT	FR DISC	HARG	FRΔ	TE					
14	THO TEXT	Discharge Period	Discharg e Rate GPM	minute s per day	million gallon s per day (MGD)	AVG COC concentrati on in mine effluent (MG/L)	Formula: lbs/day = dose X flow x 8.34 lb/gal	AVG POUNDS PER DAY (lbs/day)	AVG POUNDS PER YEAR	16 YEAR TOTAL POUNDS DISCHARGED	16 YEAR TOTAL TONS DISCHARGED
-	URANIUM	1960-1976	2,618	1,440	3.77	5.25	(5.25 MG/L) X (3.77 MGD) X 8.34 lb/gal	165.07	60249.07	963985.13	481.99
6 7 8	MOLYBDENUM	1960-1976	2,618	1,440	3.77	1.91	(1.91MG/L) X (3.77 MGD) X 8.34 lb/gal	60.05	21919.19	350706.97	175.35
	SELENIUM	1960-1976	2,618	1,440	3.77	0.02	(0.02 MG/L) X (3.77 MGD) X 8.34 lb/gal	0.63	229.52	3672.32	1.84

ONGOING PHASE 2 WORK

HISTORIC WATER LEVELS

HOMESTAKE NPL SITE

HOMESTAKE NPL SITE

From Homestake Mining Company **SELENIUM CONCENTRATION** 12 MAP 914 920 West Edge of Alluvial Aquifer O ND --LEGEND--SE CONCENTRATIONS, mg/l -0.1 - SE CONTOUR Upgradient PLEASANT > SE 95% UTL* VALLEY **GRP Area** MURRAY > SE 95% UTL* ND O Well Location * Based on 1995-2004 Data T.12N

HOMESTAKE NPL SITE

PLANNED ACTIVITIES FOR GROUND WATER INVESTIGATION

